Exam I, MTH 221, Spring 2012

Ayman Badawi

QUESTION 1 . (Write down the correct maser only in the provided space, each $=2$ points, total $=42$ points)

(0) Given A is a 3×4 matrix such that $A-2 R_{2} \quad A_{1}$. Let E be an elementary matrix such that $E A_{1}=A$
\backslash Then $E=\left[\begin{array}{ccc}-0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(ii) Let $D=\left[\begin{array}{cc}4 & -2 \\ 1 & 2\end{array}\right]$. Then $D^{-1}=\frac{4}{10}\left[\begin{array}{cc}2 & 2 \\ -1 & 4\end{array}\right]=\left[\begin{array}{cc}\frac{2}{10} & \frac{2}{10} \\ \frac{-1}{10} & \frac{4}{10}\end{array}\right]$
(ii) Lei $A=\left[\begin{array}{rr}2 & 3 \\ -4 & 5\end{array}\right]$.Then $A=0.5 B+0.5 C$, where B is symmetric and O is skew symmetric. Teen
$B=\left[\begin{array}{cc}4 & -1 \\ -1 & 10\end{array}\right] \quad$ and $C=\left[\begin{array}{cc}0 & 7 \\ -7 & 0\end{array}\right]$
(iv) Coven 4 a 3×3 such bat $A \quad 3 R_{2} \quad A_{1}-3 R_{2}+R_{3}-A_{3} \quad A_{2}=\left[\begin{array}{lll}3 & 6 & 0 \\ 0 & 0 & 9 \\ 0 & 6 & 3\end{array}\right]$.
a $\operatorname{aet}\left(A^{7}\right)=-54$
b. $\operatorname{den}\left(A^{-1}\right)=\frac{-1}{162}$
c. $\operatorname{det}(2 A)=-432$
c. Let B an 3×3 matrix such that $B A_{2}=A$. Then
$B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 3 & 1\end{array}\right]$
e. The matrix $A=$
(v) $10.4=\left[\begin{array}{lll}a_{1} & 7 & -5\end{array}\right]\left[\begin{array}{lll}0 & 6 & 30\end{array}\right]$
(v) Let $A=\left[\begin{array}{ccc}a_{1} & 7 & -5 \\ a_{2} & 1 & 3 \\ a_{3} & a_{2} & a_{5}\end{array}\right]$. Given dot $\left.A\right)=8$. The value of x_{1} when we solve the system $A X=\left[\begin{array}{l}0 \\ 0 \\ (1,3) \text { ency } \quad A^{-1}=(7 x 3)+5\end{array}\right]$ is equal to $=13$

$$
(1,3) \text { end } A^{-1}=\frac{(7 \times 3)+5}{8}=\frac{13}{4}
$$

(vi) Giver A is a 3×3 matrix such that $A^{-1}=\left[\begin{array}{ccc}2 & 4 & 1 \\ -2 & 4 & 0 \\ -4 & -3 & 0\end{array}\right]$
$x_{1}=\frac{13}{4} x 4=13$
$\left(4^{2}\right)=\left(A^{-1}\right)^{T}=\left[\begin{array}{ccc}2 & -2 & -4 \\ 4 & 4 & -8 \\ 1 & 0 & 0\end{array}\right]$
b. The $(2,3)$-entry of $A=$

$$
\frac{C_{3,2}}{\operatorname{dec}(t)}=\frac{-2}{32}=\frac{-1}{16}
$$

c. The set of solution to the system of linear equations $A^{T} X=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
is
(vii) Let $A=\left[\begin{array}{ccc}4 & 2 & 2 \\ -4 & b & -2 \\ 2 & 1 & c\end{array}\right]$. Consider the system $A X=\left[\begin{array}{c}2 \\ -4 \\ 1\end{array}\right]$. Then
a. The system will have unique solution when $b=b \in \mathbb{R},\{-2\}$ and $c=$
b. The system is inconsistent when $b=-2$
c. The system has infinitely many solution when $b=b \in \mathbb{Q},\{-2\}$ and $a=1$

d. If $b=-1$ and $c=5$. then the set oi solution to the system is

(viii) Let 1 be a 2×2 matrix such that $\left(\left[\begin{array}{ll}2 & -4 \\ 1 & -1\end{array}\right] A\right)^{-1}=\left[\begin{array}{cc}0 & 4 \\ -2 & 1\end{array}\right]$. Then $A=\left[\begin{array}{cc}\frac{7}{16} & \frac{4}{16} \\ \frac{3}{16} & \frac{4}{16}\end{array}\right]$
(ix) Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6}\end{array}\right]$. Given B is 3×2 matrix such that $A B=\left[\begin{array}{ll}a_{a_{2}}+3 a_{3} & a_{1}+a_{2} \\ 4 a_{5}+3 a_{6} & a_{5}+u_{5}\end{array}\right]$. Then

$$
B=\left[\begin{array}{cc}
0 & 1 \\
4 & 1 \\
3 & -1
\end{array}\right]
$$

(x) Let $F, 2 \times 3$ matrix, such that $\left[\begin{array}{cc}4 & 1 \\ -1 & 5\end{array}\right] F-5 F=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 1\end{array}\right]$, Then

$$
r=\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & 2 & 0
\end{array}\right]
$$

(xi) Let A be a 4×4 matrix such that the 2 nd column of A is identical to the 4 th column of A. Let D be the 2 nd column of A Consider the system of linear equations $A X=D$. We know that the system has infinitely many solutions. Then

One particular solution is ($0,0.5,0,0.5$); second particular solution is $(0,0.15,0,0.25)$; third particular solution is ($0,0.3,0,0.7$).
(xii) Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$. Then

$$
A=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 2 \\
1 & 1 & 0
\end{array}\right]
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American Diversity of Shariah, Bo, Box 26666 , Shariah, United Arab Emirates.
Email abadawisaus ecu, Nw w ayman-badawi, com

Exam II , MTH 221 , Spring 2012

Ayman Badawi

QUESTION 1. (19 questions, each = 2 points, Total of points = 38)

(i) let $A=\left[\begin{array}{cc}0 & 2 \\ 1 & -1\end{array}\right]$. The eigenvalues of A are
a) $-2,1$
b) $0,-1$
c) $1,-1$
d) None of the previous
(ii) Let A be a 2×2 matrix such that A is row-equivalent to $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$. Then the eigenvalues of A :
a) Cannot be determined
b) 2,0
c) $0.5,0$
d) None of the previous
(iii) Let A as in the previous question. Then $N(A)=$
a) $\{(0,0)\}$
b) $\operatorname{span}\{(0,1)\}$
c) $\operatorname{span}\{(2,0)\}$
d) None of the previous
(iv) One of the following matrices with the given properties is diagnolizable:
a) A is $3 \times 3, C_{A}(\alpha)=(2-\alpha)^{2}(3-\alpha)$, and $E_{2}=\operatorname{span}\{(2,4)\}, E_{3}=\operatorname{span}\{(3,3)\}$
b) A is $2 \times 2, C_{A}(\alpha)=-\alpha(5-\alpha), E_{0}=\operatorname{span}\{(0,1)\}, E_{5}=\operatorname{span}\{(3,0)\}$
c) A is $2 \times 2, C_{A}(\alpha)=\alpha^{2}, E_{0}=\operatorname{span}\{(4,1)\}$
d) None of the previous
(v) Given A is $4 \times 4, C_{A}(\alpha)=(2-\alpha)^{3}(5-\alpha)$. Then $\operatorname{det}\left(A^{T}\right)=$
a) 10
b) 40
c) $\frac{1}{10}$
d) $\frac{1}{40}$
(vi) Let A as above such that $A\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 6\end{array}\right]$. Then one of the following is true:
a) $A\left[\begin{array}{c}1 \\ 0 \\ 1.5\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$
b) $A^{-1}\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ 1.5\end{array}\right]$
c) (a) and (b) correct
d) $A^{-1}\left[\begin{array}{c}1 \\ 0 \\ 1.5\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$
(vii) Given A is $2 \times 2,0$ and 1 are eigenvalues of A such that $E_{0}=\left\{\left(-x_{2}, x_{2}\right) \mid x_{2} \in R\right\}$ and $E_{1}=\left\{\left(0, x_{2}\right) \mid x_{2} \in R\right.$. THEN (JUST WRITE DOWN THE ANSWER) $A=$
(viii) Given A is $3 \times 3, C_{A}(\alpha)=(3-\alpha)^{2}(a-\alpha) . B$ is 3×3 and B is similar to A such that $\operatorname{det}(B)=54$. Then $a=$
a) 18
b) $1 / 18$
c) 6
d) Cannot be determined
(ix) Let $A=\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ -1 & -2 & 0 & 1 \\ 1 & 3 & 1 & 1\end{array}\right]$. Then $N(A)=$
a) $\left\{\left(-2 x_{3}-2 x_{4}, x_{3}+x_{4}, x_{3}, x_{4}\right) \mid x_{3}, x_{4} \in R\right\}$
b) $\left\{\left(2 x_{3},-x_{3}, x_{3}, 0\right) \mid x_{3} \in R\right\}$
c) $\left\{\left(2 x_{3}+2 x_{4},-x_{3}-x_{4}, x_{3}, x_{4} \mid x_{3}, x_{4} \in R\right\}\right.$
d) None of the previous.
(x) Let A as above then $N(A)$ (as span)
a) $\operatorname{Span}\{(-2,1,1,0),(-2,1,0,1)\}$
b) $\operatorname{Span}\{(-4,2,-2,0)\}$
c) $\operatorname{span}\{(2,1,1,0)\}$
d) $\operatorname{Span}\{(2,-1,1,0),(2,-1,0,1)\}$
e) None of the previous
(xi) Let A as in Question ix. Column Space of $A=$
a) $\operatorname{Span}\{(1,0,0),(0,0,1),(-2,0,1)\}$
b) $\operatorname{Span}\{(1,-1,1),(2,-2,3),(0,1,1)\} \quad$ c) $\operatorname{Span}\{(1,0,0),(0,0,1),(-2,1,1)\}$
d) None of the previous
(xii) Let A as in Question ix. Then For each $B \in R^{3}$
a) The system of linear equations $A X=B^{T}$ has infinitely many solutions
b) The system of linear equations $A X=B^{T}$ has unique solution
c) The system of linear equations $A X=B^{T}$ may and may not be consistent (it all depends on the selected B)
d) I need more information, you keep asking nonsense questions.
(xiii) One of the following is a subspace of P_{3}
a) $\left\{\left(2 a_{1}+a_{0}\right) x^{2}+a_{1} x+a_{0} \mid a_{0}, a_{1} \in R\right\}$.
b) $\left\{a_{2} x^{2}+x+a_{0} \mid a_{0}, a_{2} \in R\right\}$
c) $\left\{x^{2}+a_{1} x+a_{0} \mid a_{0}, a_{1} \in R\right\}$
(xiv) Let D be a subspace of $R_{2 \times 2}$ such that $\operatorname{dim}(D)=2$. Then a possibility for D is
a) $D=\left\{\left.\left[\begin{array}{cc}a+b & a \\ 0 & b\end{array}\right] \right\rvert\, a, b \in R\right\}$
b) $D=\left\{\left.\left[\begin{array}{cc}a+1 & a \\ b & 0\end{array}\right] \right\rvert\, a, b \in R\right\}$
c) $D=\left\{\left.\left[\begin{array}{cc}a+b+c & a \\ c & b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$
d) $D=\left\{\left.\left[\begin{array}{cc}a+2 b & 2 a+4 b \\ 0 & a+2 b\end{array}\right] \right\rvert\, a, b \in R\right\}$
(xv) Let $D=\{(a+b+2 c, a-b, a+2 b+3 c) \mid a, b, c \in R\}$. Then $\operatorname{dim}(D)=$
a) 1
b) $3 \quad \mathrm{c}) 2$
d) None
(xvi) Let D as in QUESTION xv. Then a basis for D
a) $\{(4,0,6)\}$
b) $\{(1,1,1),(1,0,-1)\}$
c) $\{(1,1,1),(1,-1,2)\}$
d) $\{(1,1,1),(1,-1,2),(2,0,3)\}$
(xvii) One of the following points is in D (D is as in Question xv)
a) $(7,1,11)$
b) $(-2,0,3)$
c) $(1,5,-1)$
d) $(0,-2,-3)$
(xviii) One of the following is a basis for P_{3}
a) $\left\{x^{2}, x^{2}+x, x^{2}+1\right\}$
b) $\left\{x^{2}, x^{2}+2 x+1,2 x+1\right\}$
c) $\left\{1,1+x+x^{2},-1+x+x^{2}\right\}$
d) None of the previous
(xix) Given A is a 3×3 matrix and $C_{A}(\alpha)=(1-\alpha)^{2}(3-\alpha)$. Given $E_{1}=\operatorname{span}\{(1,1,1),(1,-1,0)\}$ and $E_{3}=$ $\operatorname{span}\{(0,0,-1)\}$. Let Q be a 3×3 invertible matrix such that $Q^{-1} A Q=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then $Q=$
a) $\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$.
b) $\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]$.
c) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
d) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final Exam, MTH 221: Linear Algebra, Spring 2012
 Make sure you have 10 pages with 9 questions.
 Sign here
 Ayman Badawi

QUESTION 1. (10 points) Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$

1. Find A^{-1}.
2. Find $\left(A^{T}\right)^{-1}$
3. Solve $A^{T} X=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

QUESTION 2. (21 points) Let A be a 3×3 matrix such that $A \quad \overrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}} \quad A_{1} \quad \overrightarrow{2 R_{3}} \quad D=\left[\begin{array}{ccc}2 & -1 & 2 \\ -2 & 2 & 2 \\ 4 & -2 & 6\end{array}\right]$.

1. Find $\operatorname{det}(A)$
2. Find a matrix B such that $B D=A$
3. Find $\operatorname{det}(B)$, where B is the matrix in part (2).
4. Find $\operatorname{Rank}(A)$

Question (2) continues:
5. Solve the system $2 A X=\left[\begin{array}{c}0 \\ 2 \\ -2\end{array}\right]$
6. Find the matrix A.
7. Is there an $F \in R^{3}$ that will make the system of linear equations $A X=F^{T}$ inconsistent? If no, explain briefly. If yes, find such F

QUESTION 3. (12 points) Find a basis for the given subspace S. (They are subspaces so you do not need to check)

1. $S=\operatorname{span}\{(-2,2,2),(2,0,1),(-4,4,4),(1,-1,-1)\}$
2. $S=\left\{f(x) \in \mathbb{P}_{3} \mid \int_{0}^{1} f^{\prime}(x) d x=0\right\}$
3. $S=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2 \times 2} \left\lvert\,\left[\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right.\right\}$

QUESTION 4. (9 points)

1. Are $x^{2}, x^{2}-2,2 x^{2}-3 x+4$ independent elements of \mathbb{P}_{3} ? Explain briefly your answer
2. Given, v_{1}, v_{2}, v_{3} are independent points in R^{n} for some integer $n \geq 3$. Are $\mathbf{v}_{1}-2 \mathbf{v}_{2}, \mathbf{v}_{2}-3 \mathbf{v}_{3}, \mathbf{v}_{3}$ linearly independent points in R^{n} ? Explain your answer
3. Are the columns of $A=\left[\begin{array}{cccc}-1 & 0 & 2 & 1 \\ 0 & 3 & 2 & 5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -3 & -3\end{array}\right]$ independent?

QUESTION 5. (12 points) Let $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 4 \\ 0 & 1 & 0\end{array}\right]$

1. For each eigenvalue of A find the corresponding eigenspace .
2. If possible diagonalize A. i.e. find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.

QUESTION 6. (12 points) Let $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ be a linear transformation given by $T(a, b, c)=(a-b+3 c,-a+$ $b+c,-3 a+3 b-5 c)$

1. Find a basis for the kernel of T and find its dimension.
2. Find a basis for the range of T and find its dimension.
3. Is $(1,1,0) \in \operatorname{Ker}(T)$? Explain
4. Is $(4,0,-8) \in \operatorname{Range}(T)$? Explain

QUESTION 7. (10 points) Let $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ be a linear transformation such that $T(2,0)=(2,-4,0)$ and $(0,-1) \in \operatorname{Ker}(T)$

1. Find $T(1,0)$ and $T(0,1)$.
2. Find the standard matrix representation of T.
3. Write $\operatorname{Ker}(T)$ and Range(T) as a span of basis.

QUESTION 8. (8 points) Use the Gram-Schmidt process to find an orthogonal basis for the subspace

$$
W=\operatorname{Span}\{(1,-2,1,1),(-1,3,-1,-1),(-1,2,-1,1)\}
$$

QUESTION 9. (6 points) Let $M=\left\{(a, b, c) \in R^{3} \mid(a, b, c) \cdot(2,-1,2)=0\right.$ and $\left.(a, b, c) \cdot(-2,1,-1)=0\right\}$. Show that M is a subspace of R^{3} (i.e. Show that M satisfies the two conditions). Write M as a span of a basis of M. Note that "." means dot product.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

